
Machine Learning Prediction of Critical Micellar Concentration
Using Electrostatic and Structural Properties as Descriptors
Published as part of Journal of Chemical & Engineering Data special issue “In Honor of Frederico W. Tavares”.

Gabriel D. Barbosa* and Alberto Striolo

Cite This: https://doi.org/10.1021/acs.jced.5c00388 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: Understanding and predicting surfactants’ critical
micelle concentration (CMC) remains a key challenge for the
rational design of functional amphiphiles. In this work, we develop a
deep learning framework to predict CMCs using quantum
chemically derived descriptors, focusing on electrostatic surface
potential (ESP) and structural features. We employ a comprehensive
temperature-dependent data set comprising over 1300 CMC values
across diverse surfactant classes. Fourteen molecular descriptors are
extracted via density functional theory (DFT) calculations and used
as input, alongside temperature. A fully connected neural network
trained on these features yields accurate predictions, achieving
performance comparable to previously published graph-based models. To support model interpretability, we explicitly assessed ESP
distributions for representative surfactants. SHapley Additive exPlanations (SHAP) and partial dependence analyses reveal that
molecular volume, ESP variance, and solvation free energy are the dominant predictors, aligning with established thermodynamic
theories. These results demonstrate that DFT-derived electrostatic and geometric descriptors can enable robust and interpretable
CMC prediction, offering a physically grounded alternative to black-box models. The methodology and insights presented here may
also inform the design of nanostructured soft materials, including surfactant-assisted platforms for hydrogen storage.

■ INTRODUCTION
Surfactants are amphiphilic compounds composed of hydro-
philic and hydrophobic segments, enabling them to self-
assemble into ordered structures (micelles) that can encapsulate
either water or oil, depending on the surrounding medium. This
self-assembling propensity governs their interfacial behavior and
phase organization, with headgroup and tailgroup structures
playing key roles in determining surfactant function, which is
responsible for surfactant applications such as manufacturing1,2

enhanced oil recovery,3,4 drug delivery, and cosmetics.5,6

Beyond these traditional roles, surfactants have emerged as
key agents in designing and stabilizing soft and porous materials,
including those used for hydrogen storage.7−10

Numerous empirical and semiempirical models have been
developed to understand how molecular structure influences
macroscopic properties and aggregation behavior, commonly
characterized by the critical micelle concentration (CMC).11

From a historical perspective, empirical relationships such as the
Stauff−Klevens equation have long established a logarithmic
decrease in CMC with increasing hydrophobic chain length,
underscoring the central role of tail−water interactions in
micellization.12 As highlighted by Nagarajan and Ruckenstein,13

the pioneering work of Tanford14,15 provided a geometric and
thermodynamic foundation for understanding micelle forma-
tion. Israelachvili and co-workers16,17 introduced the concept of

packing parameter to predict aggregate morphologies, based on
Tartar and others’15,18 considerations on the correlations
between micelle size and surfactant tail dimensions. However,
these models generally could not make quantitative predictions
of the aggregation behavior directly from molecular structure
and solution conditions. This limitation motivated the develop-
ment of more rigorous statistical thermodynamic treatments,
which began to incorporate chain conformation and interfacial
features at the molecular level.19−21 These foundational studies
laid the groundwork for fully predictive molecular thermody-
namic models, such as those developed in the seminal works by
Puvvada and Blankschtein22 and Nagarajan and Ruckenstein.13

Molecular thermodynamic theories have been updated to
enhance predictive performance. For example, Nagarajan23

explicitly incorporated surfactant tail conformation into the
packing parameter formalism. Subsequent developments
included numerical improvements, such as the application of

Received: June 17, 2025
Revised: July 15, 2025
Accepted: July 17, 2025

Articlepubs.acs.org/jced

© XXXX American Chemical Society
A

https://doi.org/10.1021/acs.jced.5c00388
J. Chem. Eng. Data XXXX, XXX, XXX−XXX

D
ow

nl
oa

de
d 

vi
a 

19
5.

25
2.

22
0.

50
 o

n 
Se

pt
em

be
r 

28
, 2

02
5 

at
 1

5:
36

:1
0 

(U
T

C
).

Se
e 

ht
tp

s:
//p

ub
s.

ac
s.

or
g/

sh
ar

in
gg

ui
de

lin
es

 f
or

 o
pt

io
ns

 o
n 

ho
w

 to
 le

gi
tim

at
el

y 
sh

ar
e 

pu
bl

is
he

d 
ar

tic
le

s.

https://pubs.acs.org/curated-content?journal=jceaax&ref=feature
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Gabriel+D.+Barbosa"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Alberto+Striolo"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.jced.5c00388&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jced.5c00388?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jced.5c00388?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jced.5c00388?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jced.5c00388?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jced.5c00388?fig=tgr1&ref=pdf
pubs.acs.org/jced?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acs.jced.5c00388?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/jced?ref=pdf
https://pubs.acs.org/jced?ref=pdf
https://pubs.acs.org/page/policy/editorchoice/index.html


thermodynamic stability criteria, and extensions to model a
broader range of amphiphilic molecules,24 account for ion-
specific dispersive effects,25 describe micelle size distributions,26

and predict CMC of inverse micelles.27,28

From an alternative approach, classical density functional
theory (DFT), traditionally applied to inhomogeneous
fluids,29−31 was extended to describe interfacial and self-
assembly phenomena through the inhomogeneous Statistical
Associating Fluid Theory (iSAFT).32 This theoretical frame-
work has been applied to model the CMC of ethoxylated
surfactants,33 block copolymer micelles,34 and the influence of
short-chain alcohols on surfactant aggregation.35 In addition to
iSAFT, other second-order thermodynamic perturbation
theories have been employed to investigate the interfacial
behavior of surfactants,36−40 although these efforts are for the
most part restricted to nonionic surfactants.
As an alternative approach that leverages quantum chemical

calculations, continuum solvationmodels such as COSMO-SAC
and COSMO-RS41−43 have been adapted to predict micelliza-
tion phenomena by treating the micelle as a distinct phase. For
instance, COSMO-RS has been used to estimate CMCs by
solving thermodynamic equilibrium conditions.44 More sophis-
ticated approaches, such as COSMOmic,45,46 account for
micelle internal structure through layer-wise charge distribu-
tions obtained from molecular dynamics (MD) simulations.
Further developments have overcome the need for explicit
simulations by iteratively optimizing micelle structure using a
self-consistent framework.47 Despite their good performance,
especially for nonionic surfactants, software availability and
computational demands often limit COSMO-based methods.48

From a molecular perspective, several studies have employed
simulations, in particular molecular dynamics (MD), to
investigate the interfacial behavior of amphiphilic mole-
cules.49−51 Our group has contributed both atomistic and
coarse-grained simulations.52−54 Notably, Jorge55 employed
atomistic simulations to study the self-assembly of n-
decyltrimethylammonium bromide, estimating the CMC
based on the concentration of free surfactant molecules in
solution. While this approach effectively captured aggregation
behavior, it was later critiqued by Jusufi and Panagiotopoulos,56

who argued that relying on the free monomer concentration to
predict the CMC may, in some cases, be problematic due to the
system-dependent nature of the proposed extrapolation.
Hybrid methodologies have also emerged. A seminal work by

Sresht et al.57 combined MD simulations with molecular
thermodynamic theory to compute surface tension isotherms,
using MD-derived parameters to inform the thermodynamic
model. However, micellization was not incorporated into the
underlying phase equilibrium framework. Inspired by this
approach, Caŕdenas et al.58 introduced a strategy that accounts
for micellization by using structural features at the water−
surfactant interface. In parallel, Kanduc et al.59 proposed a
thermodynamically consistent framework that circumvents the
time-scale limitations of classical MD by computing transfer free
energies via enhanced sampling and alchemical path techniques.
This approach enables the prediction of CMCs and adsorption
isotherms directly from atomistic models without requiring the
explicit observation of micelle formation, thereby providing a
rigorous bridge between simulation and experiment. However,
this promising approach has only been demonstrated for simple
nonionic surfactants so far.
With the enhanced computational capabilities now available,

graph neural networks (GNNs) have emerged as promising

tools for predicting surfactant properties, including CMCs,
offering advantages over traditional physics-based models when
sufficient data are available. Recent works have applied standard
machine learning models, such as artificial neural networks,
random forest, and support vector machine, to predict CMCs of
a small set of ionic surfactants in mixed solvent systems using
basic structural and solvent descriptors.60,61 For instance, Qin et
al.62 trained a GNN on experimental data to predict CMCs
across multiple surfactant classes and provided interpretable
saliency maps linked to molecular features. Building on this
CMC database, Moriaty et al.63 further advanced the previously
published GNN by incorporating Gaussian processes for
uncertainty quantification, thereby achieving a clearer assess-
ment of the applicability domain. Brozos et al.64 introduced a
particularly valuable data set comprising nearly a thousand
experimentally measured CMC values with explicit temperature
dependence, spanning a wide range of surfactant classes.
Leveraging this comprehensive data, their temperature-aware
GNN model improved predictive performance compared to
previous approaches.
Machine learning approaches could also be used for

integrating physicochemical descriptors into predictive frame-
works, which is particularly valuable for extracting mechanistic
insights.65−68 Previous studies have shown that descriptors
derived from electrostatic surface potential (ESP) and calculated
using density functional theory (DFT) correlate well with the
condensed-phase behavior of various compounds.65,69−73 In our
prior work,71 we found that ESP descriptors capture interfacial
behavior trends in a small set of fluorinated and branched
surfactants. However, a systematic investigation has not yet been
conducted to assess the influence of ESP descriptors on our
ability to predict surfactant aggregation, specifically, the CMC.
To address this, in this work, the data set from Brozos et al.64 is
leveraged to investigate how ESP descriptors influence CMC,
using deep neural network surrogate models. The trained model
is analyzed to extract physical insights and identify the key
molecular features influencing CMC behavior. Building on prior
literature, the model presented here not only performs well with
respect to experimental data, but it also helps identify the
underlying molecular features driving micellization.
The remainder of this manuscript is organized as follows.

First, we describe the methodology used to compute ESP
descriptors based on DFT calculations. Next, we present the
data set and the machine learning approach used to train the
model and interpret CMC behavior. In the results section, we
examine the distribution of selected descriptors used as input
parameters for the new machine learning model and illustrate
their variability using representative surfactants. We then
evaluate the predictive performance of the surrogate model
and explore the rationale behind its predictions. Finally, we
conclude with a summary of key insights obtained from the
model.

■ COMPUTATIONAL METHODS
Density Functional Theory Calculations. Considering

the high conformational flexibility of the surfactants studied, we
first performed an exhaustive conformer search. We adopted the
metadynamics-driven Conformer−Rotamer Ensemble Sam-
pling Tool (CREST) of Pracht et al.74 Starting from an initial
structure, metadynamics (MTD) simulations were run at the
GFN2-xTB level,75−78 using the root-mean-square deviation
(RMSD) as the biased collective variable. Several bias-parameter
pairs (different pushing strengths and widths) ensured broad
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conformer exploration. Each conformer was energy-minimized,
and low-energy fragments were recombined using the built-in
genetic crossing (GC) algorithm. Whenever a lower-energy
minimum was found, the search was automatically restarted.
Initial 3D geometries were generated from SMILES strings

using OpenBabel,79 and then prefiltered using a genetic
algorithm with the Universal Force Field.80 The lowest-energy
seed was refined at the GFN2-xTB level and passed to CREST’s
complete iMTD-GC workflow with the analytical linearized
Poisson−Boltzmann (ALPB) implicit-water solvation.81 For
molecules containing fewer than 200 atoms, we used 500 ps
MTD runs. Larger surfactants were treated with 100 ps runs to
keep wall times manageable. After removing redundant
structures (identified based on energy, RMSD, and rotational
constants), the global minimum was selected, and its electro-
static potential (ESP) descriptors were extracted. These values
were then used as inputs for neural-network CMC training.
The conformers selected via the algorithm just described were

initially optimized using GFN2-xTB, followed by an optimiza-
tion using the composite approach B97−3c.82 To incorporate
bulk-solvent effects, the geometries were reoptimized at the
same B97−3c level using the SMD water continuum model.83

Finally, single-point energies in aqueous solution were
computed using the range-separated hybrid functional
ωB97X-V with the def2-TZVP basis set and the SMD implicit
solvation model (water), following the protocol of Mariano et
al.84 Calculations conducted at this level of theory have shown
consistently strong performance across several molecular
properties.85 All DFT calculations were carried out with the
software ORCA 6.0.86 The computational workflow is
summarized in Figure 1.

The Multiwfn package87−89 was used to calculate general
interaction property functions (GIPFs).90 The following
descriptors were computed on the van der Waals (vdW) surface
and on the electron density isosurface set at 0.001 e/Bohr3:
molecular volume (Vm), surface area (SA), average electrostatic
surface potential V( ), positive and negative average ESP values (

+V and V ), ESP extrema (Vmax and Vmin), total ESP variance
(σtot2 ), molecular polarity index (MPI), ESP-defined polar
surface area (regions with |V| > 10 kcal/mol), the average
deviation of the ESP from its surface mean (Π), and νσtot2 , where
ν is the degree of charge balance. A full description of these
descriptors can be found elsewhere.69 The solvation free energy
and the HOMO−LUMO energy gap, computed at the ωB97X-
V/def2-TZVP/SMD level, was also included as input
parameters for the neural network model.

Descriptors derived from quantum chemical calculations,
particularly those based on ESP, have been shown to correlate
with a wide range of condensed-phase and interfacial proper-
ties.65,69−73 Notably, ESP- and geometry-based descriptors have
been successfully used to predict surface tension and speed of
sound in ionic liquids through machine learning models trained
on DFT-derived features.65 This broader applicability motivates
their use in surfactant modeling as physically meaningful
features within data-driven frameworks.
The combination of GFN2-xTB, B97−3c, and ωB97X-V/

def2-TZVP/SMD was selected to provide a consistent and
computationally efficient framework for modeling both small
and bulkier amphiphiles. Each level of theory employed has been
extensively validated for a broad range of organic molecules:
GFN2-xTB has demonstrated reliable performance in predicting
molecular geometries, conformational energetics, and thermo-
chemistry;91−93 B97−3c has proven effective at producing
accurate molecular structures at low computational cost,82,94

making it well suited for intermediate refinement. For final
single-point energy evaluations, the range-separated hybrid
functional ωB97X-V, paired with the def2-TZVP basis set and
the SMD solvation model, has shown strong predictive power
for solvation thermodynamics and noncovalent interactions.84,94

It is also worth pointing out that, while explicit solvent models
are likely to provide more accurate predictions of the properties
of individual solvated surfactants, implicit solvent models allow a
computationally efficient sampling of the surfactants’ properties,
thus enabling a GNN model for CMC predictions.
Data Set and Model Training. We employed the

experimental database used by Brozos et al.64 This data set
compiles temperature-dependent critical micelle concentration
(CMC) measurements for a wide range of surfactants. It
contains 1377 CMC values covering 492 unique surfactant
structures, including 201 anionic, 171 nonionic, 90 cationic, and
30 zwitterionic species. Each entry includes the isomeric
SMILES representation of the surfactant, the corresponding
CMC value, and the temperature at which the measurement was
performed, spanning a temperature range from 0 to 90 °C. For
227 surfactants, the CMC was measured at multiple temper-
atures, allowing for exploring temperature-CMC relationships.
As for data splitting, following Brozos et al.,64 we treated each

surfactant−temperature−CMC triplet as an independent data
point duringmodel training. Brozos et al. also demonstrated that
including CMC measurements at different temperatures for the
same surfactant in the training set slightly improves predictive
performance when extrapolating to new conditions. In our case,
approximately 60% of the data set (840 data points) was used for
training, while the remaining 40% (537 data points) was
reserved for validation and testing. To assess the robustness and
generalization performance of the model, we performed k-fold
cross-validation with values of k = 2 through k = 10, following
best practices for deep learning regression workflows.95 This
approach allowed us to systematically assess howmodel stability
and predictive performance vary across different data partition-
ing schemes, hence assessing the generalization capabilities of
the new GNN model.
A fully connected neural network was constructed to predict

the CMC from molecular descriptors and temperature. The
input layer consists of 15 features: 14 ESP-derived or molecular
descriptors, plus temperature. The model architecture includes
three hidden layers with 32, 64, and 16 neurons, respectively.
Each hidden layer uses a Rectified Linear Unit (ReLU)
activation function, followed by layer normalization and dropout

Figure 1. Computational workflow used to generate descriptors for
CMC prediction.
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regularization (dropout rate = 0.0504). The final output layer
yields a single scalar value corresponding to the standardized
natural logarithm of the CMC. The hyperparameters, including
hidden layer sizes, dropout rate, learning rate, and activation
function, were optimized using a grid search implemented via
Ray Tune,96 with the test set strictly held out to ensure an
unbiased evaluation of model performance.
Model training was performed using the mean squared error

(MSE) loss function and the Adam optimizer with a learning
rate of 1.59 × 10−4. Training was conducted over 4000 epochs
with a batch size of 32. Input features and target variables were
all standardized. Early stopping was not applied; instead, the
model was periodically evaluated on the validation set every 10
epochs to monitor overfitting and learning progression. All
models were implemented using the PyTorch framework.
Model performance was evaluated using the Mean Absolute

Error (MAE) and the coefficient of determination (R2). To
further interpret the influence of each input feature on the
predicted CMC values, we employed SHAP (SHapley Additive
exPlanations)66,67 and partial dependence plots (PDPs).68 A
permutation-based SHAP explainer was used to estimate the
contribution of each feature to the model output. Both SHAP
and PDP analyses were conducted using the SHAP Python
package.66

■ RESULTS AND DISCUSSION
Surfactant Properties and Electrostatic Surface Po-

tential. In this section, we analyze the distributions of key
molecular descriptors for the surfactants included in the data set.
The density distributions of selected properties are shown in
Figure 2. The molecular weight distribution (Figure 2, panel
(a)) is approximately unimodal and skewed toward low values,
with a peak around 350 g/mol and a long tail extending up to
700 g/mol. Most of the evaluated surfactants have molecular
weights in the range from 250 to 450 g/mol. The lightest
molecule in the data set is 1,2-propanediol (a nonionic
surfactant),97 while the heaviest is the ethoxylated surfactant
C12E14.

98

A similar trend is observed for the distribution of molecular
volume Vm (Figure 2, panel (b)), which peaks near 450 Å3 and
spans from about 200 to 1000 Å3. Values for maximum ESP
(Vmax, Figure 2(c)) show a broader range, spanning from 20 to
200 kcal/mol, and a weak bimodal distribution suggesting
distinct polarization behaviors between different surfactant
classes. Values for molecular polarity index MPI (Figure 2(d))
are more evenly spread, with a distribution centered around 20
kcal/mol, which highlights the varying degree of hydrophilicity
and charge localization present in the data set.
We further examined the molecular structures of selected

surfactants chosen based on the descriptor distributions shown

Figure 2.Density distributions of selected molecular properties for the surfactants evaluated in this work: (a) molecular weight, (b) molecular volume
(Vm), (c) maximal electrostatic surface potential (Vmax), and (d) molecular polarity index (MPI).
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Figure 3. ESP mapped onto the molecular surfaces of selected surfactants (ρ = 0.001 e/Bohr3, min = −0.03 au and max = 0.03 au). Surfactants were
selected to represent the minimum, near-average, and maximum values of three key molecular descriptors: (top row) Vm, (middle row) maximum ESP
(Vmax), and (bottom row) MPI. Surfactant labels: (a) M107, (b) M385, (c) M13, (d) M166, (e) M46, (f) M403, (g) M471, (h) M223, and (i) M21.
Color bar code: carbon - cyan; oxygen - red; hydrogen - white; sulfur - yellow; nitrogen - blue; lithium - purple.

Table 1. Summary of the Predicted GIPF Features for the Surfactants Illustrated in Figure 3a

Surfactant Vm (Å3)
Vmin

(kcal/mol)
Vmax

(kcal/mol)
SA
(Å2)

V̅
(kcal/mol)

σtot2
(kcal/mol)2

Π
(kcal/mol)

MPI
(kcal/mol)

Polar SA
(%)

νσtot2
(kcal/mol)2

M107 107.8 −47.6 58.2 120.8 2.8 316.1 17.9 18.5 73.1 75.3
M385 476.8 −71.0 131.7 404.4 4.2 981.4 20.2 21.4 67.6 237.3
M13 1040.4 −70.1 44.8 745.0 0.0 303.6 12.7 12.7 47.8 48.6
M166 474.5 −45.2 16.8 391.7 1.9 170.6 7.2 7.8 28.7 16.2
M46 547.1 −100.1 78.1 490.6 −1.1 1419.3 27.1 27.3 56.4 329.8
M403 345.3 −47.9 216.6 308.5 3.2 1407.0 15.8 16.0 37.6 187.1
M471 353.7 −32.4 83.3 317.9 1.0 302.1 6.7 6.4 15.7 36.3
M223 410.7 −57.3 156.1 343.1 3.0 501.5 16.6 17.8 68.3 113.0
M21 428.3 −91.3 79.5 348.0 −2.5 1081.4 37.5 37.7 13.7 268.2

aSurfactant codes are used to match entries in the database of Brozos et al.64 Molecular formulas, CAS numbers, and molecular weights for these
compounds are listed in Table 2.
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in Figure 2. Figure 3 provides a qualitative visualization of the
ESP surfaces for surfactants representingminimum, average, and
maximum values of Vm ((a), (b), and (c)), Vmax ((d), (e), and
(f)), and MPI ((g), (h), and (i)). The surfactant with the
smallest molecular volume (M107, Figure 3(a)) is a small,
nonionic glycol-like molecule. The surfactant with an average
molecular volume (M385, Figure 3(b)) is a branched ionic
species, whereas the surfactant with the largest volume (M13,
Figure 3(c)) corresponds to a long-chain ethoxylated molecule
characterized by an extended oxygenated backbone.
Considering Vmax, the surfactant with the smallest Vmax

(M166, Figure 3(d)) is a nonionic ethoxylated species, where
the lower positive potential is likely due to the presence of
numerous oxygen atoms. The near-average Vmax surfactant
(M46, Figure 3(e)) is a zwitterionic molecule, characterized by a
localized electron-poor region near the cationic nitrogen group.
The surfactant with the highest Vmax (M403, Figure 3(f)) is a
fluorinated species that presents a pronounced positive region
near the lithium cation.
The surfactant with the lowest MPI (Figure 3(g)) is a

fluorinated molecule; consistent with previous studies, which
attribute the low polarity of fluorinated surfactants to the low
polarizability of fluorocarbon chains, leading to weaker
intermolecular forces and distinct hydrophobic−oleophobic
characteristics.53,99−101 A common anionic surfactant represents
the near-average MPI value (Figure 3(h)), while the surfactant

with the highest MPI (Figure 3(i)) is a zwitterionic molecule.
The coexistence of positively and negatively charged groups
within the same backbone plays an important role in modulating
the CMC behavior of zwitterionic surfactants.102

Table 1 summarizes the numerical values of the GIPF
descriptors for the selected surfactants. The corresponding
molecular formulas, CAS numbers, and molecular weights are
provided in Table 2. These values provide a quantitative
complement to the ESP surfaces shown in Figure 3. Molecular
volume and surface area increase significantly from M107 to
M13, ranging from approximately 108 to 1040 Å3 and 121 to 745
Å2, respectively. In terms of electrostatic features, M403 shows
the highestVmax, followed byM223 andM385. Conversely, M46
exhibits the most negative Vmin, indicating strong localized
electron-rich regions.
Surfactants with broad ESP distributions, such as M403 and

M46, show the highest ESP variances (σtot2 ) and large νσtot2
values, reflecting their pronounced electrostatic heterogeneity.
Zwitterionic M21 shows the highest Π (a proxy for charge
separation over ESP) value, consistent with its significant spatial
charge separation, while fluorinated M471 exhibits the lowest Π
(6.7), in line with its weak polarity and uniform surface potential.
MPI and polar surface area show similar trends: M21 has the
highestMPI and a large polar SA, whileM471 exhibits the lowest
values for both. Interestingly, the average ESP V( ) values are all

Table 2. Molecular Identifiers Corresponding to the Surfactants Listed in Table 1, Including Label, Name, Molecular Formula,
CAS Registry Number, and Molecular Weighta

Label Name Molecular Formula CAS number Molecular Weight (g/mol)

M107 Propane-1,3-diol C3H8O2 504-63-2 76.09
M385 Sodium 4-(tridecan-5-yl) benzenesulfonate C19H31O3SNa 130462-56-5 362.5
M13 3,6,9,12,15,18,21,24,27,30,33,36,39-tridecaoxahenpentacontan-1-ol C38H78O14 24938-91-8 759
M166 2-(2-(2-(dodecyloxy)ethoxy)ethoxy)ethan-1-ol C18H38O4 3055-94-5 318.5
M46 4-(dimethyl(tetradecyl)ammonio)butane-1-sulfonate C20H43NO3S 22313-73-1 377.6
M403 Lithium 1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-heptadecafluorooctane-1-sulfonate C8F17LiO3S 29457-72-5 506.1
M471 2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-nonadecafluorodecanoic acid C10HF19O2 335-76-2 514.09
M223 Lithium tetradecyl sulfate C14H29LiO4S 52886-14-3 300.4
M21 3-(decyldimethylammonio)propane-1-sulfonate C15H33NO3S 15163-36-7 307.5

aA complete list of all evaluated surfactants is provided in the Supporting Information.

Figure 4. Parity plot for the neural network model trained to predict the critical micellar concentration of the evaluated surfactants: (a) training, test,
and validation sets are presented separately; (b) model predictions across the different types of surfactants.
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relatively close to zero, within a few kcal/mol, in contrast to the
much more pronounced extrema observed for Vmin and Vmax.
A complete list of the DFT-derived electrostatic and structural

descriptors computed for all surfactants is available in the
Supporting Information (CSV format).
CMC Surrogate Model. Based on the calculated molecular

descriptors discussed above, we now explore how these features
correlate with condensed-phase behavior. Specifically, we
analyze the performance of the trained model in predicting
CMC, aiming to gain a deeper understanding of the molecular
features that contribute to the micellization process. The
learning curve (Figure S1) of the trained model shows stable
and smooth convergence, with both training and validation
losses decreasing rapidly within the first few hundred epochs and
then stabilizing; no indication of overfitting is observed.
The predictive accuracy of the surrogate model is illustrated in

the parity plot shown in Figure 4(a). Predicted CMC values are
plotted against experimental values for the training, validation,
and test sets. The data points align closely along the diagonal,
indicating strong agreement between predicted and reference
values across all subsets. Notably, no significant overfitting or
systematic bias is observed, and the model performs consistently
on unseen data, demonstrating robust generalization.
To contextualize the performance of our surrogate model

against previously reported approaches, we compared our
results with the recent work by Brozos et al.,64 who developed
a graph neural network (GNN) ensemble to predict CMC
values. Their model achieved an RMSE of 0.24 and an R2 of 0.95
for a similarly sized test set (approximately 218 unseen data
points). In comparison, our model, trained on physically
motivated molecular descriptors, achieved an RMSE of 0.38,
an MAE of 0.27, and an R2 of 0.95. The comparable R2 values
suggest that the descriptors used here are sufficient to capture
the dominant factors influencingmicellization. Furthermore, the
promising performance achieved, compared to that of other
GNN-based models in the literature,62,63,103 confirm the
relevance of electrostatic and structural descriptors for CMC
prediction. Consistently, k-fold cross-validation (see Figure S2)
confirmed that the model performance, measured by MAE,
remains stable across different data splits, indicating that the
results are not sensitive to partitioning. Notably, the MAE from
our specific train−test split lies within the variability observed
across folds. It is worth highlighting that, the smooth
convergence of the learning curves, stable cross-validation
results, and strong test-set performance collectively indicate no
signs of overfitting.
Themodel performance as assessed across different surfactant

classes is illustrated in Figure 4(b). Qualitatively, the model
exhibits consistent predictive accuracy for anionic, cationic,
nonionic, and zwitterionic surfactants. Quantitatively, class-
specific metrics computed over the entire data set are
summarized in Table S1. The model performed exceptionally
well for zwitterionic and cationic surfactants, achieving low
MAEs and high R2 values. The nonionic class showed slightly
higher error, possibly due to the bulkier structures and greater
conformational flexibility that are typical for surfactants in this
class. While conformer search was applied to mitigate this
variability, the broader range of structural motifs in nonionic
surfactants likely increases the challenge of accurately predicting
the GIPF features.
We analyzed the trained model using SHapley Additive

exPlanations (SHAP) to gain deeper insight into the molecular
features driving CMC predictions. Grounded in cooperative

game theory, SHAP attributes to each input parameter a
contribution value that reflects its impact on individual
predictions.104 Applied to the surrogate model developed
here, the SHAP analysis identifies which molecular descriptors
most strongly influence the predicted CMC values, offering
interpretable insights into the physicochemical patterns
captured by the surrogate model. In this context, SHAP values
quantify how each input feature contributes to the predicted
CMC: positive SHAP values indicate that a feature increases the
predicted CMC relative to the average prediction, while negative
SHAP values lead to negative contributions compared to the
average prediction.
Figure 5 shows the SHAP summary plot, which ranks the

descriptors by their contribution to the predictions. Each point

represents a SHAP value for an individual prediction, with color
indicating the magnitude of the corresponding feature: red for
high values and blue for low values. Among the features, Vm, Π,
and solvation free energy exhibit the most pronounced influence
on the predicted CMC values. Overall, the model relies most
heavily on global geometric and electrostatic descriptors, while
features such as temperature and the HOMO−LUMO gap play
a comparatively minor role. It is important to recognize that,
even though a few input parameters appear to dominate the
outcome, even the features with comparatively low SHAP values
are important in determining the CMC, especially given the
nonlinearity of the underlying GNN model.
Molecular volume emerges as a key descriptor. This result

aligns with classical molecular thermodynamic theory, proposed
by Nagarajan and Ruckenstein,13 in which the volume of the
hydrophobic tail plays a central role in determining micelle
packing efficiency and aggregate geometry. Subsequent
extensions of Nagarajan and Ruckenstein13 framework have
explicitly incorporated surfactant volume exclusion effects,
embedding molecular volume terms into free energy formula-
tions and predicting micelle structures.25,105 The surrogate

Figure 5. SHAP summary plot showing the impact of each descriptor
on the predicted CMC. Features are ranked by their mean absolute
SHAP value (top to bottom), with each point representing a single
prediction. The color scale indicates the corresponding feature value.
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model prediction of higher CMC values for surfactants with
lower Vm may reflect their diminished amphiphilic character,
such as M107, a compact, nonionic glycol-like molecule. This
trend is strongly supported by experimental data and molecular
thermodynamic theory, which predicts that surfactants with
shorter hydrophobic tails exhibit higher CMCs due to the
reducedmagnitude of the tail transfer free energy, for instance.13

The solvation free energy in water also emerges as a
meaningful descriptor, with more negative values correlating
with higher predicted CMCs. This trend is physically intuitive:
highly polar or hydrophilic surfactants tend to be strongly
stabilized in the aqueous phase, favoring the dispersed
monomeric state over aggregation, yielding higher CMCs. In
contrast, surfactants with less favorable solvation energies (i.e.,
less negative solvation free energy) are more prone to self-
assemble, yielding lower CMCs.
The average electrostatic surface potential V( ) showed low

SHAP value distribution and flat partial dependence behavior.
This outcome is consistent with the physical interpretation of V̅
as a global descriptor that often averages out localized
electrostatic variations and typically converges toward near-
zero values. Similarly, diminished contributions were observed
for +V and V , with SHAP values indicating no clear trend,
either positive or negative, on the predicted CMC.

In contrast, the extrema of the electrostatic potential (Vmax
and Vmin) captured more pronounced and spatially localized
effects, both of which significantly impacted model predictions.
This trend is consistent with recent simulations showing that the
interfacial ESP rises with aggregation.106 Likewise, the results of
Bernardino and Farias de Moura107 revealed that more negative
electrostatic potential regions, especially those arising from close
sulfate headgroup arrangements, stabilize ion−headgroup
coordination patterns that mirror electrostatic bridging. These
findings suggest that local electrostatic extrema may facilitate
self-assembly by stabilizing interfacial interactions such as
headgroup−headgroup association, counterion coordination,
or localized hydrogen bonding.108

Among other ESP-based descriptors,Π, defined as the average
deviation of the ESP from its surface mean, emerged as one of
the most impactful descriptors in the SHAP analysis. As a proxy
for internal charge separation or molecular polarity, Π reflects
the extent of surface electrostatic contrast. Molecules with larger
Π exhibit more pronounced intramolecular electrostatic
gradients, enhancing interactions with bulk water and
influencing the packing of surfactants in micellar structures.
The input feature σtot2 , which decomposes into positive and
negative components, captures the overall heterogeneity of the
molecular surface. Higher variance can signal the coexistence of

Figure 6. Partial dependence plots (PDPs, dark blue lines) and individual conditional expectation (ICE) curves (light blue lines) showing the marginal
effect of (a) Vm, (b) Π, and (c) Vmin.
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strongly electron-rich and electron-poor regions, favorable
conditions for electrostatic complementarity during aggrega-
tion. The product νσtot2 , a scaled form of the total variance, has
previously been proposed as a valuable metric for identifying
molecules with strong tendencies to engage in electrostatic self-
interactions.69 In the surrogate model, moderate SHAP
contributions from this descriptor support the idea that
pronounced electrostatic contrast, even when delocalized,
promotes intermolecular association, thereby reducing CMC.
Overall, these results highlight the relevance of global charge
separation and localized potential extremes in driving surfactant
aggregation.
Finally, to explore the influence of individual descriptors on

the surrogate GNN model predictions, we computed partial
dependent plots (PDPs) and individual conditional expectation
(ICE) curves.68 In general, PDPs reflect the average effect of a
feature across the data set, whereas ICE curves reveal instance-
level responses and potential heterogeneity in feature influence.
In the following, we focus on the three most impactful
descriptors identified by SHAP; namely, Vm, Π, and Vmin.
The PDP and ICE plots in Figure 6 are consistent with the

SHAP-derived feature attributions. The input feature Vm shows
the most pronounced and coherent effect on log(CMC), with a
sigmoidal average trend indicating that increases in Vm strongly
reduce the predicted CMC up to a plateau. The descriptors Π
and Vmin also align with the SHAP analysis in terms of their
average directionality; however, their corresponding ICE curves
are more widely distributed, suggesting that interactions with
other features may modulate their effects on CMC or that their
contributions are nonlinear and context-dependent.
Finally, it is worth stressing that the surrogate model relies on

molecular descriptors extracted from the lowest-energy con-
former of each surfactant, selected via CREST-based conformer
sampling and DFT refinement. Although only a single
representative structure was used per molecule, several key
descriptors, such as Vm, Π, and Vmin, are inherently sensitive to
molecular conformation. This sensitivity is reflected in the
individual conditional expectation (ICE) curves and partial
dependence plots shown in Figure 6, where variation in
predicted CMC values arises from changes in these
conformation-dependent features. While an exhaustive con-
former-averaging approach was computationally infeasible, our
results suggest that the selected descriptors capture conforma-
tional effects relevant to micellization behavior.

■ CONCLUSIONS
In this work, we revisited the critical micelle concentration
prediction problem using a data-driven approach grounded in
quantum chemical descriptors. Leveraging a recent temperature-
dependent experimental database containing 1377 data points,
we evaluated whether electrostatic surface potential features,
computed via density functional theory, capture key phys-
icochemical trends underlying surfactant aggregation.
We first characterized the chemical diversity of the surfactants

present in the data set by calculating and analyzing the
distribution of descriptors such as molecular weight, volume,
maximal ESP, and molecular polarity index. A neural network
trained on these features shows very good performance in
predicting experimental CMC values across surfactant classes.
Interpretability analyses revealed that structural descriptors,
particularly molecular volume, play a dominant role in
micellization. Thermodynamic properties such as solvation
free energy also proved influential and consistent with

established molecular thermodynamics theories. The SHAP
and PDP/ICE analyses collectively reinforce the conclusion that
structural and electrostatic features, particularly those capturing
spatial asymmetries and localized potential extremes, play
central roles in directing surfactant self-assembly. The
consistency between model interpretation tools and known
physical principles supports the relevance of the chosen
descriptors and suggests that data-driven frameworks rooted in
molecular properties can yield accurate and mechanistically
meaningful CMC predictions. These insights may directly
inform the molecular design of surfactants with tailored
aggregation behavior, by revealing how specific electrostatic
and geometric features influence micellization. Such under-
standing enables more rational, structure-based development of
functional amphiphiles for applications in formulations, drug
delivery, and soft materials.
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